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Abstract 

To shift to a low-carbon economy, the EU has been encouraging the deployment of variable 

renewable energy sources (VRE). However, VRE lack of competitiveness and their technical 

specificities have substantially raised the cost of the transition. Economic evaluations show 

that VRE life-cycle costs of electricity generation are still today higher than those of 

conventional thermal power plants. Member States have consequently adopted dedicated 

policies to support them. In addition, Ueckerdt et al. (2013) show that when integrated to the 

power system, VRE induce supplementary not-accounted-for costs. This paper first exposes 

the rationale of EU renewables goals, the EU targets and current deployment. It then explains 

why the LCOE metric is not appropriate to compute VRE costs by describing integration 

costs, their magnitude and their implications. Finally, it analyses the consequences for the 

power system and policy options. The paper shows that the EU has greatly underestimated 

VRE direct and indirect costs and that policymakers have failed to take into account the 

burden caused by renewable energy and the return of State support policies. Indeed, induced 

market distortions have been shattering the whole power system and have undermined 

competition in the Internal Energy Market. EU policymakers can nonetheless take full 

account of this negative trend and reverse it by relying on competition rules, setting-up a 

framework to collect robust EU-wide data, redesigning the architecture of the electricity 

system and relying on EU regulators. 

 

Keywords: Variable renewable energy, Integration costs, Distortion costs, EU electricity 

system, System costs 
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Glossary of Terms 

 
Balancing costs: costs caused by the uncertainty of the power generation profile and its 

variability. Transmission system operators subsequently have to balance the network by 

relying of flexible thermal power plants. 
 

Capacity credit: represents how much firm capacity can be taken out of the power system 

for every new unit of a new (variable) technology. 

 

Capacity factor: corresponds to the average power generation per installed capacity unit of 

a technology. 

 

Demand response: method to diminish or shift peak demand of electricity. 

 

Demand-side management: includes energy efficiency and demand response. It aims at 

reducing electric consumption, continuously are on some periods (peak periods). 

 

Electricity system: describes a web of generators (producers) and consumers of electricity 

linked by transmission and distribution networks. 

 

Energy efficiency: describes methods enabling to perform the same activities while using 

less power. 

 

Firm capacity: the amount of electricity that is guaranteed to be available at a given time. 
 

Grid-related costs: Expenses for grid infrastructure and management due to the location 

specificity of the plants 

 

Integration costs: costs that occur beyond the individual plant and are caused by the 

integration of renewables to the power system 

 

Levelised cost of electricity: ratio of the costs incurred to build and operate a power-

generating unit on the amount of electricity expected to be generated on the lifetime of this 

unit 

 

Profile costs: expenses for additional thermal power due to adjusted utilization of thermal 

plants induced by the variability of the generation profile. 

 

Renewable electricity sources: means non-fossil electricity sources: hydropower, wind, 

solar, geothermal, wave, tidal, etc. 

 

Residual load: what remains of the power demand after subtraction of variable renewable 

energy sources’ output. 

 

Variable renewable energy: refers to non-dispatchable generation technologies that rely on 

fluctuating conditions (wind, sun, etc.) 
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“Any fact becomes important when it's connected to another.”  

― Umberto Eco, Foucault’s Pendulum 

 
 

 

1. Introduction 

 

The EU wants to be a “world leader in renewables” (Cañete, 17 March 2015). The target, 

for 2030, is to increase the share of energy consumption from renewable energy to at least 

27% at EU level. However, this target is costly. At EU level, the total cost of public 

interventions in energy, excluding transport, was €120-140 billion in 2012 (European 

Commission, 2014), the equivalent of Hungary 2012 GDP. Not surprisingly, the major part 

of public support goes to renewables with more than €10 billion each for solar and onshore 

wind. Thus, to reduce the financial burden during the transition, the European Commission 

(EC) gives fifteen action points in its February 25. Strategy for a “Resilient Energy Union” 

(2015b). It especially mentions its objective “to ensure that the 2030 EU target is met cost-

effectively” (Ibid., p.21).  

 

Cost-effectiveness here links two concepts, policy effectiveness (realised growth) and 

economic efficiency (support paid compared to generation cost). The aim of this paper is to 

look at the second concept through a system perspective. The efficiency of each technology 

taken in isolation may be different from its efficiency when considering its interactions 

with the power system. The deployment of variable renewable energy (VRE) may indeed 

bring additional costs to the system. These costs may at the end of the day harm efforts to 

decarbonize our economies and fight against climate change, at EU and global level. In this 

regard, the calculation of costs needs to be as complete as possible. Policymakers would 

then be in position to draw conclusions on the state of policies and their impact on the 

power system.  

 

Although the debate on the cost of VRE technologies is abundant and could suggest that all 

relevant issues have been addressed, there are still grey areas. VRE deployment has been a 

recent trend and the EU is the most advanced in the transition. As such, it cannot reflect on 

any historical reference or comparison with other regions. Furthermore, the technicality of 

VRE and the complexity of the European electricity system make assessments particularly 

difficult. It justifies a comprehensive analysis of VRE deployment and accompanying 

policies’ economic effects.  

 

Economists have developed several metrics to measure the costs of different electricity 

sources. The most widely used is the “Levelised Cost of Electricity” (LCOE). The LCOE 

is the ratio of the costs incurred to build and operate a power-generating unit on the amount 

of electricity expected to be generated on the lifetime of this unit (United Kingdom 

Government, 2013). It gives the assumed “total costs” (fixed and variable) of each MWh 

generated. Thus, it allows comparing variable sources of energy, renewables and non-

renewables, despite their different cost structures (Ueckerdt et al., 2013).  

 

Nonetheless, Joskow demonstrates that “levelised cost is a flawed metric for comparing 

[intermittent generating units] such as wind and solar with conventional dispatchable 

generating units technologies such as nuclear, coal and gas-combined-cycle” (2011, p.2). 

LCOE neglects costs integration costs, i.e. costs that occur beyond the individual plant and 

are caused by the integration of renewables to the power system. When added to direct 
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generation costs, they form what Ueckderdt labels system LCOE (2013). Technical 

specificities of variable renewable energy (VRE) may induce significant integration costs, 

which affect not only VRE themselves but also conventional generators. If so, European 

policymakers may have to find methods in order to mitigate the costs of mitigation.  

 

Most importantly, VRE deployment may harm the economic efficiency of the European 

power system. Taken together, all these costs are referred to as system costs. Their 

combined effects may require a massive EU power system overhaul. The cost of the 

transition could otherwise become unbearable for European citizens. 

 

Therefore, the question that guides this paper is: “Should EU policymakers consider 

system costs of variable renewables?” 
  

The main finding of the paper is that the EU, by using the LCOE metrics, has greatly 

underestimated VRE direct and indirect costs. Until today, VRE deployment has meant 

more interventions by Member States and less competition in the market. The paper then 

proposes recommendations to reverse the trend that include more reliance on competition 

rules and a redesign of the European electricity system. 

The paper is structured as follow. As a starting point, it describes the rationale of EU 

renewables goals EU targets and current deployment of renewables. Secondly, an analysis 

of VRE LCOE and integration costs is performed. In a third part, estimates of integration 

costs’ drivers are confronted and the options to mitigate them are discussed. Lastly, the 

overall system costs of renewables are highlighted and conclusions for policymakers on a 

possible way forward are drawn.  

 

 

2. The EU renewables target 
 

Science has made it clear that climate change will have a negative impact on our 

economies and that carbon emissions are the major cause of climate deregulation. The EU 

has been at the forefront of efforts to mitigate greenhouse gas (GHG) emissions.  

The Lisbon Treaty (2009, Article 194) sets out the EU’s competence in energy policy and 

decarbonisation: “Union policy on energy shall aim [...] to promote [...] the development of 

new and renewable forms of energy.” The EU has thus adopted EU-wide and national 

objectives. The Renewable Energy Directive 2009/28/EC has set mandatory national 

targets for achieving, by 2020, a reduction in GHG emissions of at least 20% below 1990 

level. In addition, the EU 20-20-20 targets include goals of 20% of energy consumption 

sourced from renewables. The EU ambitions for 2030 are even greater with its goal to 

reduce GHG emissions by 40%. 

 

Before analysing the deployment and associate costs of renewables, it is worthwhile 

making the distinction between variable or intermittent renewables – such as solar power 

and wind power – and “non-variable” or “controllable” renewables – for example 

hydroelectricity and biomass. The potential for more hydroelectricity in Europe is limited. 

Dams already occupy most of the favourable locations. Thus, the main effort is currently 

on wind and solar energy, both of them with a variable generation profile. Variable 

renewables are, according to the International Energy Agency, “based on sources that 

fluctuate during the course of any given day or season”. Thus, “their output varies 

according to the variability of the resource” (IEA, 2008). Contrary to VRE units, thermal 
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plants are labelled dispatchable. They can quickly be turned on and off to generate 

electricity whenever needed. They include gas-fired power plants, coal power plants and to 

a lesser extent nuclear plants. 

 

It is particularly difficult to compute RES' costs. Nonetheless, approximations have been 

made. The EC estimated the additional cost of having 20% of renewable energy between 

€13bn and €18bn per year with growing costs every year (EC, 2008). Thus, in 2020 the 

extra cost would amount to €24 - €31bn. However, the ascertained cost of renewables 

sharply contradicts EC figures. In Germany alone, the total amount of subsidies in 2012 

was around €20bn (Spiegel, 04 September 2013) with the barrel of oil around $100. It was 

translated into consumers electricity bill through a 20% surcharge (Ibid.). In 2014 alone, 

subsidies of €22-24bn to the VRE sector coincided with a record annual loss of €3.2bn for 

the German utility (power company) E.ON, which runs mainly on fuels (Euractiv, 2014 

and Financial Times, 2015). 

  

These figures first reveal that the direct cost of variable renewables might have been 

underestimated. Second, they also show that they have a negative disruptive effect on the 

traditional energy model and cause value losses to conventional power generation plants. 

These two facts may have been overlooked by EU policymakers, not because they have 

decided to ignore them, but more accurately because the valuation of costs may have been 

partial and may have been positively biased in favour of VRE. 

 

 

3. System LCOE and the drivers of integration costs 

 

Policymakers must necessarily rely on estimates to take cost-effective decisions. EU 

services have adopted the LCOE for its convenience to compare VRE and conventional 

sources. Thus, we first expose the LCOE method and its advantages.  

 

These clarifications on the LCOE then bring us to its drawbacks. We demonstrate that it 

fails to take into account other VRE-specific integration costs. Policymakers may fall in 

the trap of thinking that the LCOE gives them a complete overview of costs for each 

technology, when they may actually get a very partial and reduced understanding of the 

drivers of variable RES costs and, subsequently, of their economic potential.  

Additionally, this part facilitates the discussion on integration costs’ mitigation options.  

 

3.1. LCOE 

 

“The Commission services consider the LCOE method as best practice” (EC, 

2013, p.19)  

 

The LCOE of a particular technology is “the discounted lifetime cost of ownership and use 

of a generation asset, converted into an equivalent unit of cost of generation in [€/MWh]” 

(UK Department of Energy and Climate Change, 2013, p.6). It is the net present value of 

“the ratio of the total costs of a generic plant (including both capital and operating costs), 

to the total amount of electricity expected to be generated over the plant’s lifetime” (Ibid., 

p.6). The components of LCOE are concisely described below. 

 

1) Investment costs (𝐼𝑡): pre-development costs and capital expenditure costs. 
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2) Operations and maintenance costs ( 𝑂𝑀𝑡 ): relating to labor, regular maintenance, 

insurance, repair, regulatory fees, etc. 

3) Fuel costs (𝐹𝑡): They apply to thermal power plants.  

4) Decommissioning and waste storage costs: for nuclear power plants. 

The costs are then divided by the power generation over the unit lifetime. 

 

The LCOE metric enables to compute the lifecycle cost of a plant or its “cradle to grave” 

costs. Ueckerdt et al. emphasise that it “allows comparing conventional plants with 

variable renewable sources like wind and solar power, even though they have very 

different cost structures” (2013, p.2). The formula enables it. Thanks to a discounting 

method  (1 + 𝑟)𝑡 , it gives the net present value (NPV) of costs that occur at different 

moments in time.  

 
𝐿𝐶𝑂𝐸

=
𝛴𝑡=1

𝑛  
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐. + 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 & 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐. + 𝐹𝑢𝑒𝑙 𝑐. +𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 & 𝑤𝑎𝑠𝑡𝑒 𝑐.

(1 + 𝑟)𝑡

𝛴𝑡=1
𝑛 𝑃𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(1 + 𝑟)𝑡

 

  
As an example, gas requires relatively low up-front fixed investment costs but annual 

operations and maintenance costs are far from being negligible, especially when fuel prices 

climb. On the contrary, RES may be more capital-intensive, depending on the installed 

capacity. They may ask for more fixed investment costs on day one. But their variable 

operations costs are lower as they run on a free “fuel”: wind and sun for example. 

 

The Fraunhofer Institut has computed in 2013 the LCOE of RES and conventional power 

plants in Germany ( See Graph 1). One can see that coal is overall the cheapest 

technology. Combined cycle is already more expansive and in the same cost ranges as 

wind onshore. Solar costs are higher but still lower than the costs per MWh of wind 

offshore. 

 

Indeed, Joskow (2011) demonstrates that the LCOE is a flawed metric for comparing the 

competitiveness or economic attractiveness of various technologies. The inherent mistake 

of LCOE is that it takes electricity as a homogeneous good, which means “power supply 

from different fuels and technologies is perfectly substitutable” (Ueckerdt et al, 2013, 

p.17). 

The reason lies first in the different generation profiles between VRE and conventional 

power plants. Thermal plants are dispatchable, the network operator can control their 

power delivery and adjust it almost whenever it wants. Supply adapts to the demand. 

Joskow demonstrates that “conventional generators are typically dispatched when the 

wholesale market price for power exceeds their short-run marginal cost of generating 

electricity” (2011, p.7). On the contrary, VRE have intermittent generation profiles, driven 

by natural elements. Network operators cannot dispatch power when the market asks for it, 

i.e. when the price is higher. Supply cannot adjust to demand. As a result, the economic 

value of power generated by variable RES is lower.  

A further proof to that argument is that private firms do not plan their investment decisions 

based on LCOE. They take revenues into consideration because their evaluations are 

market-based.  
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Even more worryingly for VRE players, their increasing market share will further depress 

the price as they generate at more or less the same periods, when wind is blowing and sun 

is shining. It will lead to oversupply and further price reduction.    

 

Graph 1: LCOE of renewable energy technologies and conventional power plants at 

locations in Germany in 2013 

 

 

Source: Fraunhofer Institut, 2013, p.16 

As Joskow points out, “the extension and use of levelised cost comparisons to intermittent 

generation has been a mistake and tends implicitly to overvalue intermittent generating 

technologies compared to dispatchable alternatives” (2011, p.4). The LCOE metric is 

adapted for dispatchable power plants, not intermittent. However, government agencies 

actually use it for their procurement programs and auctioning processes, regardless of 

technologies’ economic merits (Ibid).   

 

Hence, it is worth searching for a more adapted metric. It would enable policymakers to 

take decisions based on better-adjusted benchmarks. 

 

3.2. Integration costs and system LCOE 

  

 “RES specificities, such as production variability and low-predictability, zero 

marginal-cost of generation, and strong site-specificity, result in a set of 

technical and economic challenges” (Henriot and Glachant, 2013, p.2) 

  

Ueckerdt et al. put emphasis on system LCOE, “the total levelised economic costs of a 

technology” (2013, p.3). The system LCOE metric combines LCOE and integration costs, 

which are “all additional costs induced by VRE that are not directly related to their 

generation costs” (Ibid, p.4). 
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Integration costs comprise three main additional costs to LCOE following “three intrinsic 

properties of VRE: variability, uncertainty and location-specificity” (Ueckerdt et al., 2013, 

p.10). These three costs are shown in Table 1.  

A distinction should be made between balancing costs and grid-related costs on the one 

side and profile costs on the other side. The first two are direct or additional costs to the 

system. Indeed, the highest the penetration of variable RES, the more the need to build and 

manage the network. The third refers to “diminishing cost savings in the non-VRE system 

when increasing the VRE share.” (Edenhofer et al., 2015, p.13). 

 

Table 1: The three types of integration costs. 

Name of cost Cause Induced costs Nature of costs 

1. Balancing 

costs 

Uncertainty of the 

generation profile 

(1) Reserve 

requirements and (2) 

more flexible 

operation of thermal 

plants  

Additional  (the 

deployment of 

variable RES cause 

higher expenses) 

2. Grid-related 

costs 

Location-specificity 

of the plants 

Additional expenses 

for grid infrastructure 

and management 

Additional 

3. Profile costs Variability of the 

generation profile 

Expenses for 

additional thermal 

power due to adjusted 

utilization of thermal 

plants 

Diminishing cost 

savings  

 
Source: Ueckerdt et al., 2013 

 

The uncertainty of the generation profile causes balancing costs. The weather can hardly be 

predicted with full certainty. It means the inflow of power from variable RES is hardly 

predictable more than a few hours in advance as well. It induces costs: reserves of coal and 

gas to counterbalance a momentary lack of power (1) and more start-up and shutdowns 

operations on conventional power plants (2). This is the cost of non-reliability. 

 

Grid-related costs also are a direct additional burden. They are due to the location-

specificity of variable RES and can be valued as “the additional investments in the 

transmission grid after the integration of a given target of renewables with respect for those 

required for an “equivalent” system without renewables” (ILEX, 2002, p. 147). VRE 

generators are currently not fully held responsible for these costs. Edenhofer et al. (2015) 

qualify integration costs' three drivers as transmission capacity infrastructure, 

transmission losses and varying resource quality and land prices. 

1. Transmission capacity infrastructure: refers to investments in extension of and 

connection to the grid (A) as well as grid reinforcement (B). With variable RES, 

“the average distance between production and consumption increases” (Groebel, 

A., for the EC (2013), p.4) and the power lines intermittently have to carry a 

surcharge of electricity.  

2. Transmission losses: transportation of power mechanically creates losses. The 

largest the distance between generation and consumption of power, the largest the 

loss. Wind parks are far away from conglomerations and thus face power losses. 
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3. Varying resource quality and land prices. The geographical footprint of variable 

RES is higher than the one for a conventional power plant. Put together with 

NIMBY (“not in my backyard”) issues, variable RES are either located far from 

urban centres or face higher land costs. 

 

Beyond additional rather technical costs, there are “diminishing cost savings in the non-

[VRE] system when increasing the VRE share” (Edenhofer, 2015, p.13). These “profile 

costs” are the most complex to account for but they are also the ones with the largest 

negative disruptive effect on the European power system and the functioning of the 

Internal Energy Market (IEM).  

The term “profile costs’ refers here to the costs induced by the generation profile of 

variable RES: their variability, i.e. intermittency creates three kinds of costs. 

1. Full-load hour reduction (FLH reduction): when VRE units generate electricity, 

they replace conventional power plants because they benefit from their close-to-

zero marginal costs. As a result, dispatchable power plants produce less electricity 

during their lifetime, i.e. they earn less revenue while their investment costs remain 

identical. Mechanically, their LCOE per MWh increases.  

2. Back-up costs: VRE have a low capacity factor, i.e. a low percentage of power 

generation over their lifetime per installed capacity, less than 35% for wind power 

and  less than 25% for solar (Ueckerdt et al., 2013). In addition, their generation 

profile does not match fluctuations in demand. They cannot adapt to the needs. But 

the power system requires adequacy, i.e. “the ability of the system to satisfy 

demand at all times, taking into account the fluctuations in supply and demand” 

(OECD IEA, 2012, p.17). It explains VRE low capacity credit, the capacity credit 

indicating “how much firm capacity can be removed from the system in relation to 

[the installation of] a new unit of this technology” (Ibid, p.10). According to the 

OECD, it “rarely exceed[s] 10% of total capacity and decline with rising shares 

[…] in electricity production” (Ibid., p.30). Thus, for every MWh of VRE capacity 

installed, the power system needs to maintain almost the same capacity of 

dispatchable power.  

 

All these complex technical properties would be less of a problem if the market could find 

economically efficient solution. In a market without distortions, the natural outcome of 

supply and demand properties would be that dispatchable power plants would be 

sufficiently remunerated for the residual power they generate when VRE do no produce 

sufficiently. In reality, utilities with dispatchable power plants face a missing money issue 

in particular because of regulated prices.. They cannot rely solely on the value of electricity 

they sell on the market to cover fixed and marginal costs.  

 

3. Overproduction costs: Ueckerdt et al. (2013, p.12) point out that “at high shares an 

increasing part of VRE generation exceeds load and this overproduction might need 

to be curtailed. Overproduction can result in negative hourly pricing or, as the EC 

mentions, “even in negative daily average baseload electricity prices” (2014d, p.8)  

Ueckerdt et al. expose profile costs: FLH reduction, back-up capacity needs and 

overproduction costs  (See Graph 2). The arrow on the bottom right hand corner shows 

overproduction. The arrow in the middle represents FLH reduction: with VRE penetration, 

conventional power plants run during less hours. Nonetheless, “hardly any generation 

capacity can be replaced” (Ueckderdt et al., 2013, p.13), because of the low capacity credit 

of VRE (arrow on the upper left hand-corner).  
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Graph 2: Three main challenges of integrating VRE 

 

 

 Source: Ueckerdt et al., 2013, p.13 

 

The worrisome factor common to these three challenges is the reduced utilization of sunk 

capital, for thermal plants (full load hour (FLH) reduction) as well as for VRE 

(overproduction). Even more worrying, Hirth explains that this cost component “has not 

been accounted for in most previous studies” (2015, p.1). 

 

As explained above, the question is not whether integration costs exist. They do. A more 

relevant question for policymaking purposes would be: 

 Are integration costs significant compared to LCOE? 

If the answer were yes, the following question would be: 

 Do they change the comparative cost-effectiveness of technologies? 1) Between the 

different variable RES technologies? 2) In comparison with other technologies 

(nuclear, coal, CCGT). 

If no to 1) and 2), policymakers may consider other decarbonisation options such as a 

reduction in electricity demand. Indeed, it would mean that changing the power mix and 

targets would not prevent an increase in the overall transition cost. If yes to 1) or 2), 

policymakers should pay close attention to changes in the merits of each technology and 

prevent from favouring one over another (technology neutrality).  
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4. Estimations of integration costs and implications 

 

4.1. Estimation of integration costs 

 

“A number of challenges were not addressed at the time of the 2009 climate 

and energy package […] The management challenges linked to the introduction 

of renewables, including dealing with the variable supply of certain renewables 

(e.g. wind and solar) were also not fully considered” (EC, 2013, p.6) 

 

  

There is, unfortunately, no such thing as a simple calculation of integration costs. Ueckerdt 

et al. demonstrate that “it is difficult to determine the costs that are actually additional […] 

Integration costs cannot be measured or calculated directly” (2013, p.4). A key reason is 

that “integration costs not only depend on the characteristics of VRE technologies but also 

on the power system in which they are integrated, and the power system’s flexibility to 

adapt” (Ueckert et al., 2013, in Hirth, 2015, p.5). 

 

Complexity leads to debate. According to Ueckerdt et al. (Ibid), there are issues with 

methods used to compute integration costs. As an example, some researchers use a 

benchmark technology, a flat block of energy, without integration costs. They then 

compare the cost of producing electricity with this technology to the cost of producing the 

same amount of electricity with VRE. Their goal is to extract “the pure integration costs” 

(Ibid, p.8). But the integration costs-free benchmark is biased because it also creates 

integration costs itself. As Ueckderdt et al. mention, the benchmark technology generates 

base-load power. Consequently “increasing its share would increase the specific residual 

costs because the residual system would need to cover a higher fraction of peak load” 

(Ibid). Instead, they propose to follow another method and argue “integration costs should 

be calculated by modelling the power system with and without VRE and comparing the 

resulting specific residual system costs” (Ibid, p.9). Thus, the graphs used in this analysis 

follow this method. 

 

Literature on integration costs is very recent. The section above (4.1.1) has showed that 

schools of thought disagree on the appropriate computation methods. Furthermore, 

estimations are scarce and results diverge a lot, but some studies have nonetheless been 

conducted. Based on them we first examine here each cost individually. Secondly we 

compile these integration costs and compare them to LCOE.  

 

Balancing costs may receive too much coverage in the literature. Their marginal 

importance is minimal compared to other cost drivers. Estimates consistently show a cost 

of less than €5/MWh, even with penetration of VRE above 40%. Policymakers should 

therefore pay less attention to them. 

 

Literature on grid-related costs is missing. Quite surprisingly, the EC was already 

considering paying full attention to them in 2008. Nonetheless, there has not been much 

progress since. A handful of studies have been conducted (gathered in particular by 

Holtinen et al., (2011) but they report average costs, not the marginal cost impact of VRE 

on the grid. Hirth (2012) translates them to between €5 and €10/MWh. It depends naturally 

on the type of area. In the densely populated continental Europe, Grid-related costs may be 

lower than in Nordic countries with long distances between generation and consumption. 
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Finally, we present here estimates of profile costs. Based on thirty studies reviewed, Hirth 

graphically represents the costs. He finds a range of €15-25MW/h at 30-40% market share 

(Graph 3). 

Graph 3: Wind profile costs. 

 

 Source: Hirth, 2012, p.19 

Profile costs are twice as important as balancing and grid-related costs combined. Another 

factor to take into consideration is that the highest the penetration of VRE, the more profile 

costs per MWh escalate too. This property is shared with integration and balancing costs 

and should concern policymakers. Indeed, on this point integration costs diverge with 

LCOE, which remain constant are may even decrease with further deployment thanks to 

the learning curve effect. 

 

Comparing these costs to the average cost of electricity production without VRE reveals 

their importance: in 2005, the average cost (addition of fixed costs, variable costs and fuel 

costs) was €73/MWh in the Euro’10 (EC Impact Assessment, 2011, p.80). Furthermore, 

the LCOE of wind is getting close to this number in some favourable locations. We can 

even go one step further and assume the wind LCOE to be €73/MWh in these locations. If 

we add integration costs presented above – totalling around  €30/MWH - system LCOE are 

above €100/MWh, representing a cost increase of more than 40%.  

 

The aforementioned complexity of integration costs and the lack of data limit the 

implications we can draw. Nonetheless, there are lessons to be drawn: 

1) Integration costs are not negligible compared to LCOE. System LCOE  is a relevant 

metric to compare the economic efficiency of technologies. 

2) Integration costs and consequently system LCOE rise with a growing share of 

VRE. It means that they could become “an economic barrier to further deployment 

of wind and solar power” (Ueckerdt et al., 2013, p.22). 

3) Literature on integration costs is too scarce, especially on grid-related and profile 

costs. A research agenda would be needed. 

4) Profile costs represent the lion’s share of integration costs. 
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4.2. Implications of integration costs 

 

First of all, integration costs and related system LCOE change the merit of 

technologies. 

Integration costs may be more important for some VRE technologies than for others. Hirth 

compiles his findings on four technologies in a (See Table 2). As expressed before, 

balancing costs are either low or moderate for all technologies. Grid-related present more 

interest as they vary a lot. They are negative for solar PV with a low penetration rate (less 

than 10%) and they become only moderately positive with additional deployment (above 

10%). On the contrary, grid-related costs of offshore wind are high because of the distance 

from consumers and the high-technicality required in building and maintaining 

transmission lines under the sea. Not surprisingly, profile costs are the most difficult to 

account for. First, solar profile costs are extremely dependent on penetration rate. In 

continental Europe, at high shares, a consequent percentage of power generated is lost in 

overproduction (summer days) and the consumed power covers mainly baseload. The 

reason is that peak demand occurs generally in winter and around 6pm, when the sun is not 

shining anymore. 

 

Table 2: Different VRE technologies in comparison. 

 

Source: Hirth, 2012, p.26 

There are debates on the contribution of wind to respectively peak load, intermediate load 

and base load. Based on modelling (Graph 4, below), Ueckerdt et al. believe that wind 

covers more peak and intermediate load than solar as one can see that the RLDC for wind 

(left) is less steep than for solar (right). 

 

Ueckerdt et al. justly remark, “the decomposition of integration costs helps estimating the 

importance of different options” (2013, p.20). We derive implications for long-term 

mitigation strategies. We review here integration options that can mitigate the cost of 

climate change mitigation. Indeed, Hirth points out that “integration costs not only depend 

on the characteristics of VRE technologies but also on the power system into which they 

are integrated, and the power system’s flexibility to adapt” (Hirth, 2015, p.5).  

 

The four main options to deal with flexibility are: 

1. On generation (supply): a) adjustment of the residual capacity mix b) 

interconnections c) storage. 

2. On consumption (demand): demand-side management (DSM) 
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Graph 4: RLDC for increasing shares of wind (left) and solar PV (right) in Germany.  

 

Source: Ueckdert e et al., 2013, p14 

 

1. a)  Adjustment of the residual capacity mix: it may be the most promising tool. The 

FLH reduction of thermal power plants results in higher investment costs per MWh. 

Thus, it is necessary to direct investments to plants with low sunk costs (gas) that 

would cover mid and peak load.  

However, this assumption is in contradiction with the short-run effect induced by VRE. 

Lower prices and residual load hit technologies with high variable costs such as gas 

turbines (Henriot and Glachant, 2013). 

b) Interconnections: the possibility to dispatch power from one MS (with a given mix) 

to another (with a different mix) would reduce the need to maintain plants solely to 

cover peak capacity. It would reduce imbalances between supply and demand.  

c) Storage: short-term storage (pumped hydro, batteries) is another tool to 

accommodate intermittency. 

The three supply-side options also change the value of power generated by VRE. It is 

compiled in Table 3. Overall, they are beneficial for VRE value and as such, its 

competitiveness. 

Table 3: Mitigation options and the value of VRE power.  

 

Source: Hirth, 2013, p.30 
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2. Demand-side management: demand response especially, with a system of incitation, 

smart grids and smart meters would increase the capacity credit of VRE. Consumers’ 

demand would better adapt to (variable) supply. 

 

Overall, taking into account integration cost backs the EU economic rationale to push for 

more cross-border interconnections, efforts on storage and DSM. It may also trigger more 

debates on nuclear long-term economic value and its (in)compatibility with high shares of 

VRE. The EU has not sufficiently tapped into the four options’ economic potential. 

However, these options also have a cost. 

 

Thus, it is not clear yet how the options will develop and interact. There is a need to 

develop a framework that would compare their cost-efficiency and model cost-efficient 

policies. It is extremely challenging to compare system LCOE or to conduct economic 

analyses “such as calculating [VRE] welfare-optimal deployment [or] conducting cost-

benefit analyses” (Hirth, 2015, p.3). EU policymakers should try to consider how they 

could consolidate integration costs into regulatory impact assessments.  

 

In a nutshell, the more VRE are deployed, the more their integration costs rise and the 

more policymakers will have to deal with this increasingly heavy burden. In a market with 

perfect competition and completeness, integration costs would be perfectly internalised by 

VRE. It would lead to a cost-efficient deployment of VRE - and other low-carbon or not - 

technologies. However, the European power market is not a perfect and complete market.  

 

 

5. Market distortions and system costs 

 

Current MSs policies supporting VRE deployment distort the market and may impose an 

additional toll on the power system that we call distortion costs. We then define system 

costs as the addition of LCOE, integration costs and distortion costs. The graphical 

representation below (Figure 1) fully expresses their extent and ramifications. These costs 

naturally overlap and interact with each other. For example, both high VRE LCOE and 

integration costs often serve as a justification for MSs’ intervention. 

 

We thus define system costs differently than Ueckerdt et al. (2013) who equate integration 

and system costs, as showed in Figure 2. In our view, LCOE and integration costs form 

system LCOE. If we add to system LCOE market distortion costs, it leads to system costs. 

It enables us to gather all the costs in one concept, i.e. to have the whole picture of the toll 

renewables may cause to the electric system.  We believe it will facilitate discussions on 

the welfare effect of VRE and supporting policies. The goal would indeed be to enable 

more complete impact assessments of VRE’s costs and benefits. 
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Figure 1: Components of system costs 

Figure 2: System costs.  
Definition (left) and personal perspective (right) 
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Whether EU policymakers should consider distortion costs depends on two questions: first, 

are these costs important? Second, if yes, can the EU address the causes? Distortion costs 

are manifold, complex and as such almost unquantifiable. Nevertheless, the OECD IEA 

rightly explains that “the fact that […] they are difficult to quantify in an explicit manner 

does not mean that they do not exist” (2012 p.104). Identifying them will already have a 

positive effect on how policymakers design both power system and climate strategies.  

 

5.1. VRE and the market 

 

We first expose some economic concepts and EU energy history to start our analysis. 

Edenhofer et al. (2013, p.1) identify the starting point of any policy: “to choose a particular 

weighting of public policy objectives based on value judgments, i.e. a social welfare 

function”. EU energy policy has several goals but the most important are climate change 

mitigation, competitiveness and energy security. We focus here on the first two, which we 

believe go hand in hand. In his mission letter to the Commissioner for Climate Action to 

Energy Miguel Arias Cañete, Jean-Claude Juncker reaffirmed the need “to ensure we reach 

our climate goals in a cost-effective way” (EC, 1 November 2014). In fact, competition 

precisely assures the most cost-effective allocation of resources. At the end of the day, it 

reduces energy bills for consumers. 

 

In a perfect market, competition leads to productive efficiency, i.e. the optimal use of 

resources. However, productive efficiency does not integrate (negative) externalities such 

as carbon emissions. These externalities are not internalised by polluting power plants. 

Consequently, the market potential of VRE is lower than its economic potential for social 

welfare (Ueckerdt et al., 2013). There is a market failure that as to be remedied remedy, 

which is why governments and the UE implement policies to bridge the gap between the 

market and the economic potential. If these externalities were properly internalised, 

allocative efficiency would lead to a better allocation of resources. 

 

As for productive efficiency, the EU’s main effort has been since the 1990s to bring more 

competition into the energy sector. It has developed the Internal Market for energy - in 

particular electricity - with its three “energy packages”. In addition, the EU has developed 

a market for pollution - the EU Emissions Trading System - to address the carbon 

externalities. The aim was to internalize the negative externality of carbon emissions and 

bring allocative efficiency.  

 

We claim that recent trends have actually weakened allocative efficiency. Each MS has 

adopted renewables support schemes, causing several distortions to the market, both in 

terms of power mix and prices. The EC recognizes that “the impact of a large number of 

national support schemes for renewables on market integration was underestimated” (EC, 

2013, p.6) 

 

Climate policies have been adopted to address a market failure: the negative externality of 

CO2 emissions. it may nonetheless be replacing this market failure with a government 

failure, the distortion of competition in the IM. We expose these concerns in the following 

section. 

 

The “visible hand” of EU MSs (Finon, 2013) is partly responsible for distortions. 

However, the EU may also have shot itself in the foot with its binding national targets for 
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2020 and its lax behaviour on State-aids. To reach these targets, national governments have 

implemented multiple support policies. 

 

In addition, the distortion of price signal and the inherent issues with WRE (integration 

costs due to variability, uncertainty, location specificity, etc.) have conducted governments 

to support thermal power plants operations. For example, capacity mechanisms have been 

developed “to secure adequate electricity generation when there is a real risk of insufficient 

electricity generation capacity” (EC, April 9th 2014). Figure 3 shows both the 

accumulation of national mechanisms for capacity and the induced divergences in the IEM. 

 

Figure 3: National measures to preserve capacity adequacy. 

 

,  

Source: National Regulatory Authorities (2013), in Capacity Remuneration Mechanisms and the Internal 

Market for Electricity (Agency for the Cooperation of Energy Regulators, 2013), p.8 

 

Finally, other types of state-aids have further undermined competition in the IM with 

abuses on exemptions. VRE for example have been exempted from the costs they cause to 

the system or from energy taxes. As a whole, this return to the States is fragmenting the IM 

and breaking the European energy playing field. 
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VRE generation is not an externality in itself but it creates external costs. We expose them 

by analysing their interaction with the EU ETS. 

 

The EU ETS may be stamped “the most important piece of EU environment legislation” 

(Genoese and Egenhofer, 2014, p.1). Operational since 2005, it is the world’s largest 

market for the trade of GHG emissions allowance; it mainly concerns large polluting 

installations, i.e. power plants and factories. As a “cap-and-trade” mechanism, it first sets a 

limit or “cap” on the total emissions that can be realised every year. In addition, it fixes 

individual caps for companies and distributes allowances accordingly. The cap is reduced 

every year in line with EU targets. 

The rationale for such a cap and trade mechanism is that it is considered the most cost-

effective method to curb emissions. The scarcity of allowances translates into a price of 

carbon. Companies can then exchange their allowances or “rights to pollute”. It creates 

efficiency as “it ensures that the market price of carbon is equal to the lowest marginal 

abatement cost amongst all controlled sources” (Egenhofer, 2013, p.2). Companies 

(emitters) search for the least costly options cut emissions. They take into account the 

opportunity cost of using allowances and prepare investment plans accordingly (Ibid). 

Thus, the EU shall be moving towards a market with more efficiency and less distortions. 

It is unfortunately not the case because of interaction effects. 

 

“With overlapping policies […] one can no longer point to allowance prices as 

an accurate reflection of marginal abatement costs” (Fischer and Preonas, 

2010, p.31) 
 

The EU ETS is not the only mechanism. Renewables support schemes were meant to be 

temporary, but they now seem to be well settled in the current power system. Their 

overlapping with the ETS creates two interaction effects: 

1) Carbon price depression 

2) Change in carbon abatement attributable to each policy 

We concentrate on the first one. The second one is difficult to assess: based on modelling, 

Weigt et al. find that “abatement resulting from any given injection of RE generation 

depends on the carbon content and the merit order of the displaced generation” (2012, 

p.28).  

 

We illustrate this fact with the “avoided emissions” perspective developed by Frank 

(2014). 

 

 

Avoided emissions perspective 

The question, when considering investments in VRE, should be “which kind of 

technology will this new unit of VRE replace?” Frank rightly explains that “avoided 

emissions of a new plant or much higher if it displaces a baseload coal plant rather than 

a natural gas combined cycle plant [or a nuclear power plant] during off-peak hours” 

(2014, p.3). As coal is cheaper than gas, it crucially depends on a sufficiently high price 

of carbon that Frank calls “break-even carbon price” (Ibid, p.19) Hence the need for less 

distortions from renewables support schemes. 
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Current short-term trends in Europe demonstrate the worrying displacement of gas by coal 

(See Graph 5). IDDRI shows in four countries (the UK, Germany, Spain and The 

Netherlands) that coal generation has been growing between 2010 while gas generation has 

been plummeting. 

 

Graph 5: Change in electricity generation from gas and coal between 2010 and 2012 

(TWh) 

 
 
Source: IDDRI, 2014, p.7 

 

Lessons from Frank’s apply to the first effect. As a matter of fact, the main problem with 

the two instruments is that they have the same objective, which is to reduce CO2 

emissions. Weigt et al. show that “[as] a cap is already in place to achieve this same 

objective, no additional reduction occurs. The negative waterfall effect is that support 

schemes lead to higher generation from carbon-free VRE; it reduces demand for 

allowances; it depresses CO2 price; finally, remaining conventional power plants and 

polluting factories have less financial incentives to reduce their pollution. 

It is recognized by a majority of economists that the ETS would lead to cost-effective 

decisions, but the support schemes undermine its cost-effectiveness. First, they are not 

technology neutral; they favour certain technologies and discourage others. Second, 

because of the overall price reduction, they displace investment decisions in certain 

technologies that would have taken place with a higher CO2 price. Third, because they are 

national, they shift emissions from one country to another and lead to sub-optimal 

geographic allocation of decisions in the EU. Finally, they cause uncertainty on the future 

carbon price. 

 

As a whole, support schemes blur the price signal, both for VRE and conventional power. 

Initial distortions create a vicious circle. We represent in a simplified way thanks to Figure 

4. With financial support (for example a feed-in tariff) and priority access to the grid, VRE 

distorts the price coordination function. More VRE units are deployed but the residual 

system has no time to adapt to its generation, which leads to overproduction. Higher supply 

with the same demand creates lower prices and consequently lower revenues. In addition, 

both VRE and conventional companies require public financial support to keep running. 
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This additional public support further distorts the market price signal. At the end of the 

day, both VRE technical characteristics (low marginal costs) and support policies weaken 

economic efficiency. 

 

Figure 4: Support schemes and price signal distortion 

 
 

Signal distortions have repercussions at different levels of the power market. We argue 

here that VRE and related policies bring additional system costs also because the market 

architecture is not adapted to them. Hiroux and Sagan expose them for the deployment of 

wind: “i) if wind power producers are exposed to wrong signals, their reaction to signals 

would be inefficient and ii) if the conventional market participants are exposed to wrong 

signals, their reaction to signals would be inefficient as well” (2008, p.15). To illustrate it, 

we present some issues related to flexibility  (Table 4). 

 

Table 4: Support schemes and market signals. 

 Market design creating 

distortions 

Consequences 

Day-ahead and 

intraday markets 

-Price cap 

-Too long gate closure delays 

Increase the reliability cost 

and the problem of 

adequacy 

-Penalize VRE 

Balancing markets 
-Lack of balancing responsibility 

-Lack of liquidity 

-VRE generators overuse 

balancing services 

-Abuse of market power 

 
Source: inspired by Hiroux and Saguan, 2008, p.18 

 

Let us precise that day-ahead markets conclude trade the day before the physical delivery 

of electricity and intraday markets function during the day of operation (European Network 

of Transmission System Operators, ENTSO-E). With VRE units, the RLDC becomes 

steeper during some hours of the day (peak hours).  It means that in addition to VRE, the 

system needs power generation from thermal (peak) plants. Their service should be 

remunerated accordingly. But the price cap sends the wrong signal. It might lead to more 

costly outcomes such as controlled rolling blackout (Hiroux and Saguan, 2008).  
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Another issue with day-ahead and intraday markets is that the gate closure is too far from 

real time. VRE market participants cannot trade the power they generate sufficiently close 

to real time (Ibid). They are penalized. 

Finally, the current power system does not VRE participants responsible enough for their 

toll on balancing requirements. According to ENTSO-E, “balancing refers to the situation 

after markets have closed (gate closure) in which a TSO acts to ensure that demand is 

equal to supply, in and near real time” (2014). Because of the variability, VRE units 

deployment requires much more balancing services. However, if not charged enough for 

the service, they may abuse it. On the contrary, a lack of liquidity and competition may 

induce incumbents to abuse their market power and distort the price signal. Hence the need 

for an integration of balancing market.  

 

In this regard, TSOs should work more in common structure, ideally through ENTSO-E. In 

this regard, the interaction between a European network (ENTSO-E) and regional  

initiatives should be carefully analysed, all the more so since regional schemes have 

already emerged. As an example, in Central Europe the TSO Security Cooperation of 

eleven TSOs fosters the security of the power grids for around 170M citizens. This 

cooperation at regional level could be a first step towards fully harmonized EU rules.  

 

To conclude, we have demonstrated that VRE create additional distortion costs through the 

interaction of policies targeting the same goal, a weakened market and a rigid market 

structure. These three points call for action from EU policymakers. The first of all for self-

power preservation for the EU may be losing grip on MSs’ energy policies.  

 

As a result of these distortions, electricity costs in the EU are rising faster than GDP (EC, 

2013). Despite an overall decline of wholesale electricity prices, the price for consumers 

and industries is heavier because the network and taxes components represent more and 

more of the total price. Graph 6 illustrates it. Electricity prices for households in 2012 was 

due for more than half to taxes, levies and network fees. According to the Commission, 

“costs are likely to increase up to 2020, due to rising fossil fuel costs coupled with 

necessary investment in infrastructure and generation capacity” (EC, 2014a, p.13). 

Graph 6: Electricity price evolution by component in the EU 2008-2012.  

 

Source: EC, 2014a, p.6 
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In addition the “price differential with external competitors (with the main exceptions of 

Japan and Korea) is increasing” (Ibid, p.13). Loss of competitiveness may be another 

additional cost provoked by VRE deployment. 

  

5.2. Pertinence of system costs 

 

We expose these outcomes because they show the negative effects associated with the 

deployment of VRE, inappropriate policies and power system design. Indeed, the research 

question was not “should EU policymakers consider the different costs of VRE”. We 

focused on system costs for we wanted to see if the power system had been impacted. It has 

clearly been. We draw a figure that represents our findings expressed above ( See Figure 

5). It characterizes interactions between the three main cost drivers of VRE and the system 

as a whole.  

The starting point is that the VRE LCOE is still higher than for thermal power plants. To 

solve this issue, MSs support VRE through various policy schemes. It creates market 

distortions. In addition, the specificities of VRE induce integration costs. Integration costs 

ask for dedicated public policies, which add to distortion costs. The figure shows that 

LCOE, integration costs and distortion costs are intermingled. If national and EU 

policymakers consider solely LCOE, they will increase the burden on integration costs and 

distortion costs. Similarly, if they design support schemes for conventional generation, 

they further increase distortion costs and undermine competition on the IEM. On the 

contrary, we can view this graph from another (extreme) angle. If policymakers consider 

solely distortion costs, they will stop to support VRE, which means climate targets will not 

be reached. 

 

Figure 5: System costs in the EU, considerations for policymakers. 
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These interactions effects between levels of costs and policies demonstrate the relevance of 

the system costs concept. With the current European market design, these three kinds of 

costs are currently reinforcing each other. The whole is – negatively - higher than the sum 

of its parts.  

 

It should lead EU policymakers to consider power system design options that address the 

three ladders of system costs together. These options exist. We bring them up concisely as 

an extension to our aforementioned findings. 

 

5.3. Recommendations for EU policymakers 

 

The analysis has demonstrated that policymakers cannot disregard the cost of VRE and 

support schemes. It implies a second step, which is the necessity to redesign the power 

system. In other words, by considering the system costs concept, they should use it as a 

compass in their decision-making process. 

There are system solutions. We add them in bold to the previous figure (See Figure 6):  

focus on research and development to reduce VRE’s LCOE and answer market failure, 

define EU-wide rules that would oblige VRE companies to internalize their negative 

externalities, etc. Discussing their respective merit in details would depart from the 

research question so we limit our analysis to a concise overview of challenges that EU 

policymakers should consider. 

Figure 6: System costs and system solutions 
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They are exposed throughout the sections “A need for more information”, “A need for 

policy debate”, “Who should be responsible for cost calculation?”, “Options to address 

VRE externalities” and finally “Who should be responsible for market design?” 

 

A need for more information 

 

First of all, information is missing. Methods for LCOE computations exist but it becomes 

blurrier with integration costs because there is no possible historical comparison. 

Distortion costs and system costs as a whole are even problematic. The OECD clearly 

identifies the issue when stating, “by definition, externalities are difficult to quantify, 

which is precisely the reason why they are “external” to traditional cost accounting 

conventions, which for good reason apply to the perimeter of the enterprise.” (2011, 

p.104). However, policymakers are not CEOs as they deal with both private and public 

costs. Thus, we would recommend them to favour research on the various cost components 

and their interactions and include in in impact assessments. It would provide understanding 

of the responsibility of each technology and policy support. 

  

To give a recent example of incomplete valuation induced by lack of information and 

awareness, Ecofys conducted in 2014 for the EC an analysis of “Subsidies and Costs of EU 

energy”. Its goal was “to provide the European Commission with a complete and 

consistent set of data on energy (electricity and heating), generation and system costs and 

the historical and current state of externalities and interventions in each Member State of 

the EU and for the EU overall” (p.2). As can be read, it mentions “system costs”, 

“externalities” and “the EU overall”, but it then does not approach any of the system costs 

associated with VRE. To close the discussion, it concludes its very short overview of 

system costs (less than half a page) with a rather laconic statement: “even if system costs 

might increase in future, the contribution from energy supplied in 2012 is considered to be 

negligible. In addition, most of these costs should be reflected in the market in future, for 

example through imbalance costs for plant operators. As such they would not be defined as 

external costs” (Ibid, p.16). We provide this example to show that there is a substantial lack 

of information on and consideration of system LCOE as well as distortion costs.   

 

A need for policy debate 

 

Information leads to transparency and accrued transparency would trigger a fruitful debate. 

Knowing the true magnitude of costs will enable a balanced comparison with “system-

related benefits” of climate policies (Ragwitz, 2015) such as co-benefits, synergies, etc. EU 

regulatory impact assessments should, in our view, include VRE-specific costs in a way or 

another. We provide here insights on inclusion options.  

 

We have showed the limited of the LCOE method. To take integration costs into accounts, 

two “schools” have been emerging. The first, that we have described, adds integration 

costs to LCOE. The second takes a value perspective. It considers that costs are equivalent 

to a loss of value. We would, following Hirth et al. advice to adopt a mixed perspective, 

that is, add grid-related costs and balancing costs to LCOE and retrieve profile costs from 

the market value. Indeed, profile costs represent “diminishing avoided costs” (2015, p.13). 

Hirth et al. represent it on a figure ( See Figure 7). As they explain, “VRE deployment is 

optimal when […] value and costs coincide” (Ibid, p.14). 
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Figure 7: A mixed value and cost perspective.  

 

Source: Hirth et al., 2015, p.14 

In addition to the mixed perspective on electricity costs we would recommend 

policymakers to combine it with the avoided emissions one. Frank convincingly explains 

“renewables incentives should be based not on output of renewable energy but on the 

reduction in CO2 emissions by renewable energy. They are not the same thing” (20 May 

2014). It would allow a fair comparison between all costs and benefits of each VRE 

technology, according to the power system where it is deployed. 

   

We believe policymakers should address one question, “is the deployment of VRE 

compatible with the idea of a single playing field for all actors?”  

 

Henriot and Glachant identify two schools of thought with two distinct solutions. The first 

is the “melting pot” – with same rule for everyone -, the second the “salad bowl” - distinct 

rules (2013). The first perspective states, “once competitiveness of RES will have been 

achieved, RES could be considered as active units exposed to the same rules as 

conventional generators” (Ibid, p.4). According to the first school, the market will reach 

equilibrium by itself. Conversely, the second argues that more arrangements are needed 

because of fundamental VRE characteristics such as variability (Finon and Roques, 2012) 

or lack of dynamic pricing (Ambec and Crampes, 2010). There are two issues with the 

second perspective. 

1) More state-aid may mean further price distortions, which leads to further 

problems. 

2) Uncoordinated MSs policies will further undermine the IEM.  

We believe applying the first school’s proposals may lower productive and allocative 

efficiency. 

The first school may nevertheless also have its limitations. Hiroux and Sagan (2008, p.14) 

expose the transaction costs (cost of participating in the market) problem when they state 

that with VRE integration to the market “the producers have to understand the complex 

electricity market architecture and have to be able to understand and react to different 

signals sent through the markets.” Indeed, VRE generators are often small players 

compared to conventional ones and these transaction costs associated to competition in the 
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market may be prohibitive. However, we believe they can associate to the market through 

learning by doing. 

To conclude on policy debate, it once more proves the need to conduct empirical and 

quantitative analysis, which would enable to assess each policy option.  

 

How to know, however, who should have the mandate to steer these debates and be 

responsible for cost calculation? We hint below at this issue. 

 

Who should be responsible for cost calculation? 

 

Let us start with another question: who is currently responsible for cost calculation? It is a 

simple question, which unfortunately does not bring a simple answer. Figures on prices 

and cost components of electricity can originate from national statistics agencies, 

transmissions system operators (TSOs), national regulatory agencies (NRAs), the Agency 

for Cooperation of Energy Regulators (ACER), the Council of European Energy 

Regulators or intergovernmental organisations such as the IEA.  

  

This state-of-play is harmful to European citizens. The lack of consistency of current 

information provides a very weak basis for policy formulation. Indeed, the Commission 

explains that “data on the tax exemptions and other subsidies offered by Member States 

[…] is currently patchy.” (2014, p.9) In this context, regulation cannot be evidence-based. 

It leads to negative externalities that justify a need to act in common at EU level.  

 

The EC has recently taken positive steps. It published in 2014 its first “Report on energy 

prices and costs” and is preparing a second report for 2016. It will hopefully go one step 

further. The Task Force on the Future of Energy Statistics, initiated by the EC and 

launched in 2013, came up with conclusions in January 2015, among them “the inclusion 

of national […] electricity household prices fata in the legal framework of data collections 

of Eurostat.” (2015d, p.4). In June of this year, the Energy Council on the implementation 

of the Energy Union called “call[ed] on the European Commission to help to ensure greater 

transparency in the composition of energy costs and prices by means of appropriate 

monitoring, while avoiding unnecessary burden.” (p.4). In our view, the optimum outcome 

would be cooperation between Eurostat and ACER, which would collect data from NRAs 

based on a harmonised framework.    

 

Options to address VRE externalities  

 

Whatever the result of this debate, the power system design needs to evolve. We evoke 

solutions that would bring more coherence and competition at EU level and ultimately 

reduce system costs. Thanks to its competency on competition policy, the EC has made 

important progress. The recent “Guidelines on State-aid for environmental protection and 

energy 2014-2020” (EC, 2014b) are an important leap forward.   

 

 1) Objectives and instruments. Less is more 

 

Less objectives and instruments will bring fewer distortions. Regarding public policy 

objectives (in addition to climate change mitigation, “energy security”, “green jobs and 

growth”, etc.) their multiplication may be a threat for the IEM as they may justify 

additional measures.  
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Regarding instruments, they should evolve toward more market compatible ones

Two “best-practice examples are the auctioning (or “tendering”) of VRE generation and 

the creation of markets for competition between capacity remuneration mechanisms 

(CRM) and DSM for adequacy. Finally, policies should be technologically and 

geographically neutral to let the market make efficient decisions. As such, the point 3.9.2. 

of the State-aid Guidelines, “Need for state intervention”, represents a positive movement. 

 We do not plead for the disappearance of support but advocate greater focus. 

- On less-mature technologies: encourage R&D that will bring dynamic efficiency 

and technological spillovers. As an example, at EU level SETIS (Strategic Energy 

Technologies Information System) promotes basic research and demonstration 

projects. 

- On “instruments that effectively bring new emissions in under the cap” (OECD, 

2011, p.10). Supporting electric batteries for vehicles would increase demand for 

electricity, increase the ETS carbon price and reduce emissions.  

Finally, the main instrument has to remain the EU ETS. Recently, favourable decisions 

have been adopted such as the harmonisation of allocation at EU-wide level, the auctioning 

of allowances and the future creation of market stability reserve (MSR, operational from 

2021).  

 

 2) Internalise VRE externalities  

 

“The main challenge is […] not a technical but a rather an economic one. It is 

not to find technical solutions, but rather to ensure that stakeholders have the 

right incentives to develop these technical solutions” (Henriot and Glachant, 

2013, p.2) 

 

A more efficient EU policy for climate change mitigation also requires the internalisation 

of all negative externalities created by polluting plants (internalisation through the price of 

carbon) and on VRE units (internalisation of variability, uncertainty and location-

specificity).  

Thus, we advocate two measures. 

- First, adjust and harmonize network codes: provide locational signal through nodal 

pricing (individual prices reflect incremental marginal costs). Potential investors would 

better consider the trade-off between the location generation potential and grid costs.  

- Second, impose balancing responsibilities: the Guidelines already mention it when 

stating “beneficiaries are subject to standard balancing responsibilities, unless no liquid 

intra-day markets exist” (2014, C200/25) With these responsibilities, VRE players are held 

responsible for the shifts in generation profiles. They integrate it in their investment 

decisions as they bear the full cost of their investment decisions 

  

However, accrued internalisation of negative externalities de facto increases costs for 

generators. They may be unable to enter the market. It is all the more true since the current 

price of carbon, stuck below €10 a tonne, does not bring any incentive in cutting emissions. 

It has to be recognized that only a strong carbon price can enable a positive internalization 

process and stop the IEM fragmentation.  

 

The question is, how can a fragmented governance lead to a clear-cut policy? Governance 

should be centralised to make sure Europe develops a coherent power system design. 
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Who should be responsible for market design? 

 

We believe that the “subsidiary test” justifies EU intervention. Following recent 

judgements by the European Court of Justice (ECJ) connected to the old “Meroni 

doctrine”, it appears that EU institutions are getting the legal backing to delegate power to 

regulatory agencies. Until recently, the Meroni case was seen as preventing the EU from 

doing so.  

 

In addition, there is a clear need to act in common on energy issues, to remedy the negative 

externalities caused by the IEM fragmentation and avoid 180% policy turns. On the second 

point indeed, the EU, with its slow and consensus-based model, ensures commitments are 

kept. On the contrary, there is often a risk that a MS will suddenly change its policies, as 

Spain has illustrated with its retroactive cut of renewables subsidies.  

 

The current framework is a (positive) outcome of the Third Energy Package, which entered 

into force in 2009. It established an agency (ACER) but did not give it real decision-

making powers. MSs, through comitology at the Council, can still block the adoption of 

EU-wide measures. They can oppose a decision that would potentially endanger a 

“national champion”. 

 

Thus, there is a need for both formal decision-making mechanisms and formal supervision 

on cross-border issues. ACER should gain regulatory independence to bridge the 

regulatory gap caused by currently intertwined competencies. This evolution will happen. 

The question is “at which speed?” The rapidity of the process will depend on MSs and 

NRAs’ will. We welcome in this perspective the EC’s decision to publish, by the end of 

2016, a revised “ACER regulation” with the goal of strengthening the agency. 

 

To conclude, a system costs perspective will help both policymakers and regulators in 

addressing current challenges associated with the electricity market design. We hope that 

the EC will fully apprehend the magnitude of these costs and their interactions and that it 

will integrate them in future policies. 

 

 

6. Conclusion 

 

The EU has clearly underestimated the costs associated with the shift towards low-carbon 

power generation. Although VRE investment and operation costs (LCOE) have been 

dropping, they still lack cost-competitiveness compared to thermal power plants and this 

will not change overnight. In addition VRE technical particularities cause additional costs 

to the power system and the low market value of VRE power already reflects these 

integration costs.  

 

VRE’s impossibility to compete on the market has induced other costs, as the EU and MSs 

crucially need further deployments of VRE to achieve their targets and VRE generators 

apparently crucially need public support schemes to expand. Renewables support schemes 

are not temporary anymore and their well-established presence in all EU MSs fragments 

the IEM. States do not even use the back door to reaffirm their grip on the energy stage. 

Another cost to the system caused by VRE units comes from their close-to-zero variable 

costs, which depresses the wholesale price. Intermittent renewable, without being able to 

provide necessary adequacy and reliability, turn the conventional power system into a 
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residual one. The consequence is that the power system still needs thermal power plants 

and that MSs start to remunerate them for their services. All these public interventions 

engender weakened competition and negative interaction effects. 

 

To conclude, we have highlighted the reasons why EU policymakers should not overlook 

the situation. First, because each cost taken individually is not negligible, secondly because 

system costs are reinforcing each other in the current power market design and thirdly 

because there is still some room for manoeuvre. Obliging both VRE and conventional 

players to internalize their negative externalities could, at least partly, answer concerns on 

the seemingly unavoidable trade-off between reinforced competition and VRE deployment. 

As a result, competition rules, regulations and a strengthened ETS could enable the EU to 

restore the European electricity playing field. In addition, EU institutions and MSs should 

work on setting-up a framework of robust EU-wide data collection. Finally and to build on 

the initial policy research question, policymakers should aim at lowering system costs of 

variable renewables by giving more power to a European regulator. 
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